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A derivation of the Pn reduction factors for a spherical hohlraum

B. Chang

February 15, 2008

The Pn reduction factors, obtained by Haan[1] and by Phillion et.al.[2], for the
luminance, an integral involving the specific intensity, in a spherical hohlraum were
derived independently of the specific intensity determined by transport. Their results
are plausible but unconvincing because of this disconnect. The purpose of this note is
to derive the reduction factors from the specific intensity ψ which solves the transport
equation
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for the boundary condition

ψ(r = b, cos θ, µ, cosω) = ψb(cos θ, µ, cosω), µ < 0 ,(0.2)

in a spherical cavity of radius b under the assumption of azimuthal symmetry. The
variables of (0.1), displayed in Fig.2.1, are: r is the distance variable of the spherical
coordinate system, θ is the polar angle of the coordinate system, µ is the dot product
of the photon’s direction and er, and

√

1 − µ2 cosω is the dot product of the photon’s
direction and eθ.

The solution to (0.1), obtained in [3], is

ψ(r, cos θ, µ, cosω) = ψb(cos θ0, µ0, cosω0)(0.3)

where
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The factor sin θ0 which is in the denominator of the term on the right hand side (rhs)
of (0.6) is an expression for

√
1 − cos2 θ0 where cos θ0 is given by (0.5).

We can verify that (0.3) solves (0.1) by substitution. In particular, the substitu-
tion of (0.3) into the left hand side (lhs) of (0.1) yields zero, because the functions on
the rhs of (0.3), the arguments of ψb, are in the null space of the operator on the lhs
of (0.1). For example, the function cos θ0 of (0.5) is in the null space of the operator,
because
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The substitutions of µ0 and cosω0 into the lhs of (0.1) also yield zeros. Moreover
(0.3) satisfies (0.2), because µ0 = −|µ|, cos θ0 = cos θ, and cosω0 = cosω when r is
set equal to b in (0.4), (0.5), and (0.6), respectively. If the boundary condition (0.2)
is independent of both θ and ω, which is the spherically symmetric case, then (0.3)
simplifies to the result obtained by Lathrop (the equation above eq.(4) of [4]).

Even if the boundary condition is not spherically symmetric, it can however be
represented as an expansion in Legendre polynomials

ψb(cos θ, µ, cosω) =

∞
∑

n=0

ǫn(µ, cosω)Pn(cos θ) ,(0.7)

where ǫn(µ, cosω), ‘the amplitude of the Pn mode’, is given by

ǫn(µ, cosω) =
2n+ 1

2

∫ 1

−1

d(cos θ) Pn(cos θ) ψb(cos θ, µ, cosω) .(0.8)

Moreover, the Legendre expansion enables the analytical solution (0.3) to be expressed
as

ψ(r, cos θ, µ, cosω) =

∞
∑

n=0

ǫn(µ0, cosω0)Pn(cos θ0) .(0.9)

1. The calculation of the luminance. The calculation of the luminance is a
post-processing procedure for obtaining physical information from ψ, not a method
for obtaining ψ. For example, the luminance Fb(cos θ) from the boundary is obtained
from ψb(cos θ, µ, cosω) by

Fb(cos θ) = −
∫ π

−π

dω

∫ 0

−1

dµ µ ψb(cos θ, µ, cosω) ,(1.1)

which is the flux flowing into the cavity from the boundary.
If ψb is independent of µ and cosω, which is the assumption from hereon, then

ψb(cos θ) can be taken out of the integral to yield

Fb(cos θ) = π ψb(cos θ) .(1.2)

Since ψb(cos θ) is independent of µ and cosω which means that ǫn of (0.8) is also
independent of µ and cosω, then the Legendre decomposition of Fb(cos θ) can be
obtained by substituting (0.7) into (1.1) to yield

Fb(cos θ) =

∞
∑

n=0

ǫn π Pn(cos θ) .(1.3)

The quantity ǫnπ is said to be the amplitude of the Pn mode of the luminance emitted
from the boundary.

The calculation of F (r, cos θ) the luminance at the point (r, θ) in the spherical
cavity is also a post-processing procedure; it is obtained by

F (r, cos θ) = −
∫ π

−π

dω

∫ 0

−1

dµ µ ψ(r, cos θ, µ, cosω) ,(1.4)
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where ψ(r, cos θ, µ, cosω), the solution to (0.1), is given by (0.9). The substitution of
(0.9) into (1.4) under the assumption that ǫn is independent of µ and ω yields

F (r, cos θ) = −
∞
∑

n=0

ǫn

∫ π

−π

dω
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−1

dµ µ Pn(cos θ0)(1.5)

The double integral in (1.5) can be reduced to an integral by using the addition
theorem of spherical harmonics [5] to express Pn(cos θ0) as a sum of factors which can
be integrated analytically with respect to ω. Let η ≡ r/b denote the ratio of r and the
radius of the cavity, and

s ≡ η µ+
√

1 − η2(1 − µ2)(1.6)

denote a ω-independent variable. These variables enable us to express cos θ0 of (0.5)
as
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then (1.7) can be written as

cos θ0 = cosχ cos θ + sinχ sin θ cosω ,(1.9)

where

cosχ ≡ (η − s µ) , and(1.10)

sinχ ≡
(

s
√
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)

.(1.11)

Therefore, the addition theorem of spherical harmonics [5] enables the Legendre poly-
nomial Pn(cos θ0) of (1.5) to be expressed as

Pn(cos θ0) = Pn(cosχ)Pn(cos θ) + 2

n
∑

m=1

(n−m)!

(n+m)!
Pm

n (cosχ)Pm
n (cos θ) cosmω.(1.12)

Since the integral of cosmω with respect to ω from −π to π vanishes, then the
substitution of (1.12) into (1.5) followed by the substitution of (1.10) into the result
yields

F (r, cos θ) =

∞
∑

n=0

ǫn π Pn(cos θ) fn(η) ,(1.13)

where

fn(η) ≡ −2

∫ 0

−1

dµ µ Pn

(

η(1 − µ2) − µ
√

1 − η2(1 − µ2)
)

.(1.14)

Since ǫnπ is the amplitude of the nth Legendre polynomial mode of luminance emitted
from the boundary (see (1.3)), and ǫnπfn(η) is the amplitude of the mode illuminating
the spherical surface of radius r, then we can interpret fn(η) as the Pn reduction factor
obtained by solving (0.1) for the boundary condition ψb(cos θ) =

∑

∞

n=0 ǫnPn(cos θ).
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2. The relationship of fn(η) to Haan’s formula for the reduction factor.

We shall now derive Haan’s formula from (1.14) by changing the integration variable
from µ to

z =
(

√

1 − η2(1 − µ2) + η µ
)2

.(2.1)

The integration limits which correspond to µ = −1, and µ = 0 are z = (1 − η)2,
and z = 1 − η2, respectively. In order to simplify the derivation, we need the inverse
function to (2.1)

µ =
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.(2.2)

The substitution of (2.2) into the argument of the Legendre polynomial of (1.14) gives
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Now the differential of (2.2) is
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Therefore, we have
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by (2.2), and (2.4). The substitutions of (2.3) and (2.5) into (1.14) give

fn(η) =
1

4 η2

∫ 1−η2

(1−η)2

(
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)

Pn

(

1 + η2 − z

2 η

)

dz ,(2.6)

the result derived by Haan (eq.(13) of [1]).
The results of the integrals in (2.6), obtained by the algorithm provided in [1], are

displayed in Fig.2.2 as circles. On the other hand, the results of the double integrals
in (1.5) for θ = 0, converged to 6 significant digits, divided by π, and presented as
dots in the figure, are in perfect agreement with the data presented as circles. It was
difficult to determine (2.6) accurately for small η, because the integrals, as noted by
Haan, are sensitive to round-off in this region. Therefore the results of (2.6) for η=0
are omitted from the figure. We also note that the integrals in (1.14) are more stable
than the integrals in (2.6). A four-point Gaussian approximation to the integrals in
(1.14) yields 6 digits of accuracy for n = 0, . . . , 6, and 0 ≤ η ≤ 1.
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Fig. 2.1. The position vector r, and the direction vector Ω in spherical coordinates.
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